Netty之Page级别的内存分配

news/2024/11/10 0:58:27

Page 级别的内存分配:

  之前我们介绍过, netty 内存分配的单位是chunk, 一个chunk 的大小是16MB, 实际上每个chunk, 都以双向链表的形式保存在一个chunkList 中, 而多个chunkList, 同样也是双向链表进行关联的, 大概结构如下所示:

  在chunkList 中, 是根据chunk 的内存使用率归到一个chunkList 中, 这样, 在内存分配时, 会根据百分比找到相应的chunkList, 在chunkList 中选择一个chunk 进行内存分配。我们来看PoolArena 中有关chunkList 的成员变量:

private final PoolChunkList<T> q050;
private final PoolChunkList<T> q025;
private final PoolChunkList<T> q000;
private final PoolChunkList<T> qInit;
private final PoolChunkList<T> q075;
private final PoolChunkList<T> q100;

  这里总共定义了6 个chunkList, 并在构造方法将其进行初始化,我们跟到其构造方法中:

protected PoolArena(PooledByteBufAllocator parent, int pageSize, int maxOrder, int pageShifts, int chunkSize) {
        .......
        q100 = new PoolChunkList<T>(null, 100, Integer.MAX_VALUE, chunkSize);
        q075 = new PoolChunkList<T>(q100, 75, 100, chunkSize);
        q050 = new PoolChunkList<T>(q075, 50, 100, chunkSize);
        q025 = new PoolChunkList<T>(q050, 25, 75, chunkSize);
        q000 = new PoolChunkList<T>(q025, 1, 50, chunkSize);
        qInit = new PoolChunkList<T>(q000, Integer.MIN_VALUE, 25, chunkSize);
        //用双向链表的方式进行连接
        q100.prevList(q075);
        q075.prevList(q050);
        q050.prevList(q025);
        q025.prevList(q000);
        q000.prevList(null);
        qInit.prevList(qInit);
}    

  首先通过new PoolChunkList()这种方式将每个chunkList 进行创建, 我们以q050 = new PoolChunkList<T>(q075, 50,100, chunkSize) 为例进行简单的介绍。q075 表示当前q50 的下一个节点是q075, 刚才我们讲过ChunkList 是通过双向链表进行关联的, 所以这里不难理解。参数50 和100 表示当前chunkList 中存储的chunk 的内存使用率都在50%到100%之间, 最后chunkSize 为其设置大小。创建完ChunkList 之后, 再设置其上一个节点, q050.prevList(q025)为例, 这里代表当前chunkList 的上一个节点是q025。以这种方式创建完成之后, chunkList 的节点关系变成了如下图所示:

  Netty 中, chunk 又包含了多个page, 每个page 的大小为8KB, 如果要分配16KB 的内存, 则在在chunk 中找到连续的两个page 就可以分配, 对应关系如下:

  很多场景下, 为缓冲区分配8KB 的内存也是一种浪费, 比如只需要分配2KB 的缓冲区, 如果使用8KB 会造成6KB 的浪费, 这种情况, netty 又会将page 切分成多个subpage, 每个subpage 大小要根据分配的缓冲区大小而指定, 比如要分配2KB 的内存, 就会将一个page 切分成4 个subpage, 每个subpage 的大小为2KB, 如下图:

  来看看PoolSubpage 的基本结构:

final class PoolSubpage<T> implements PoolSubpageMetric {

    final PoolChunk<T> chunk;
    private final int memoryMapIdx;
    private final int runOffset;
    private final int pageSize;
    private final long[] bitmap;

    PoolSubpage<T> prev;
    PoolSubpage<T> next;
    .....
}

  chunk 代表其子页属于哪个chunk;bitmap 用于记录子页的内存分配情况;prev 和next, 代表子页是按照双向链表进行关联的, 这里分别指向上一个和下一个节点;elemSize 属性, 代表的就是这个子页是按照多大内存进行划分的, 如果按照1KB 划分, 则可以划分出8 个子页;简单介绍了内存分配的数据结构,我们开始看看Netty 在page 级别上分配内存的流程,还是回到PoolArena 的allocate 方法:

private void allocate(PoolThreadCache cache, PooledByteBuf<T> buf, final int reqCapacity) {
     //规格化 reqCapacity=256 
        final int normCapacity = normalizeCapacity(reqCapacity);
        if (isTinyOrSmall(normCapacity)) { // capacity < pageSize
            int tableIdx;
            PoolSubpage<T>[] table;
        //判断是不是tiny
            boolean tiny = isTiny(normCapacity);
            if (tiny) { // < 512//缓存分配
                if (cache.allocateTiny(this, buf, reqCapacity, normCapacity)) {
                    // was able to allocate out of the cache so move on
                    return;
                }//通过tinyIdx 拿到tableIdx
                tableIdx = tinyIdx(normCapacity);
          //subpage 的数组
                table = tinySubpagePools;
            } else {
                if (cache.allocateSmall(this, buf, reqCapacity, normCapacity)) {
                    // was able to allocate out of the cache so move on
                    return;
                }
                tableIdx = smallIdx(normCapacity);
                table = smallSubpagePools;
            }
        //拿到对应的节点
            final PoolSubpage<T> head = table[tableIdx];
            synchronized (head) {
                final PoolSubpage<T> s = head.next;
          //默认情况下, head 的next 也是自身
                if (s != head) {
                    assert s.doNotDestroy && s.elemSize == normCapacity;
                    long handle = s.allocate();
                    assert handle >= 0;
                    s.chunk.initBufWithSubpage(buf, handle, reqCapacity);

                    if (tiny) {
                        allocationsTiny.increment();
                    } else {
                        allocationsSmall.increment();
                    }
                    return;
                }
            }
            allocateNormal(buf, reqCapacity, normCapacity);
            return;
        }
        if (normCapacity <= chunkSize) {
       //首先在缓存上进行内存分配
            if (cache.allocateNormal(this, buf, reqCapacity, normCapacity)) {
                // was able to allocate out of the cache so move on
                return;
            }//分配不成功, 做实际的内存分配
            allocateNormal(buf, reqCapacity, normCapacity);
        } else {//大于这个值, 就不在缓存上分配
            // Huge allocations are never served via the cache so just call allocateHuge
            allocateHuge(buf, reqCapacity);
        }
    }

  我们之前提到过过, 如果在缓存中分配不成功, 则会开辟一块连续的内存进行缓冲区分配, 这里我们先跳过isTinyOrSmall(normCapacity)往后的代码, 之后再来分析。首先if (normCapacity <= chunkSize) 说明其小于16MB, 然后首先在缓存中分配, 因为最初缓存中没有值, 所以会走到allocateNormal(buf, reqCapacity, normCapacity), 这里实际上就是在page 级别上进行分配, 分配一个或者多个page 的空间。我们跟进到allocateNormal()方法:

private synchronized void allocateNormal(PooledByteBuf<T> buf, int reqCapacity, int normCapacity) {
     //首先在原来的chunk 上进行内存分配(1)
if (q050.allocate(buf, reqCapacity, normCapacity) || q025.allocate(buf, reqCapacity, normCapacity) || q000.allocate(buf, reqCapacity, normCapacity) || qInit.allocate(buf, reqCapacity, normCapacity) || q075.allocate(buf, reqCapacity, normCapacity)) { ++allocationsNormal; return; }      //创建chunk 进行内存分配(2) // Add a new chunk. PoolChunk<T> c = newChunk(pageSize, maxOrder, pageShifts, chunkSize); long handle = c.allocate(normCapacity); ++allocationsNormal; assert handle > 0;
     //初始化byteBuf(3) c.initBuf(buf, handle, reqCapacity); qInit.add(c); }

  这里主要拆解了如下步骤:

  1. 在原有的chunk 中进行分配;
  2. 创建chunk 进行分配;
  3. 初始化ByteBuf。

  首先我们看第一步, 在原有的chunk 中进行分配,chunkList 是存储不同内存使用量的chunk 集合, 每个chunkList 通过双向链表的形式进行关联, 这里的q050.allocate(buf, reqCapacity, normCapacity)就代表首先在q050 这个chunkList 上进行内存分配。我们以q050 为例进行分析, 跟到q050.allocate(buf, reqCapacity, normCapacity)方法中:

boolean allocate(PooledByteBuf<T> buf, int reqCapacity, int normCapacity) {
        if (head == null || normCapacity > maxCapacity) {
            // Either this PoolChunkList is empty or the requested capacity is larger then the capacity which can
            // be handled by the PoolChunks that are contained in this PoolChunkList.
            return false;
        }
      //从head 节点往下遍历
        for (PoolChunk<T> cur = head;;) {
            long handle = cur.allocate(normCapacity);
            if (handle < 0) {
                cur = cur.next;
                if (cur == null) {
                    return false;
                }
            } else {
                cur.initBuf(buf, handle, reqCapacity);
                if (cur.usage() >= maxUsage) {
                    remove(cur);
                    nextList.add(cur);
                }
                return true;
            }
        }
}

  首先会从head 节点往下遍历:long handle = cur.allocate(normCapacity) 表示对于每个chunk, 都尝试去分配;if (handle < 0) 说明没有分配到, 则通过cur = cur.next 找到下一个节点继续进行分配, 我们讲过chunk 也是通过双向链表进行关联的。如果handle 大于0 说明已经分配到了内存, 则通过cur.initBuf(buf,handle, reqCapacity)对byteBuf 进行初始化;if (cur.usage() >= maxUsage) 代表当前chunk 的内存使用率大于其最大使用率, 则通过remove(cur)从当前的chunkList 中移除, 再通过nextList.add(cur)添加到下一个chunkList 中。我们再回到PoolArena 的allocateNormal()方法中:看第二步PoolChunk<T> c = newChunk(pageSize, maxOrder, pageShifts, chunkSize),这里的参数pageSize 是8192,也就是8KB。maxOrder 为11;pageShifts 为13, 2 的13 次方正好是8192, 也就是8KB;chunkSize 为16777216, 也就是16MB。因为我们分析的是堆外内存, newChunk(pageSize, maxOrder, pageShifts, chunkSize)所以会走到DirectArena 的newChunk()方法:

protected PoolChunk<ByteBuffer> newChunk(int pageSize, int maxOrder, int pageShifts, int chunkSize) {
    return new PoolChunk<ByteBuffer>(
            this, allocateDirect(chunkSize),
            pageSize, maxOrder, pageShifts, chunkSize);
}

  这里直接通过构造函数创建了一个chunk。allocateDirect(chunkSize)这里是通过jdk 的api 的申请了一块直接内存, 我们跟到PoolChunk 的构造函数中:

PoolChunk(PoolArena<T> arena, T memory, int pageSize, int maxOrder, int pageShifts, int chunkSize) {
        unpooled = false;
        this.arena = arena;
     //memeory 为一个ByteBuf
this.memory = memory; this.pageSize = pageSize;//8k this.pageShifts = pageShifts;//13 this.maxOrder = maxOrder;//11 this.chunkSize = chunkSize; unusable = (byte) (maxOrder + 1); log2ChunkSize = log2(chunkSize); subpageOverflowMask = ~(pageSize - 1); freeBytes = chunkSize; assert maxOrder < 30 : "maxOrder should be < 30, but is: " + maxOrder; maxSubpageAllocs = 1 << maxOrder; // Generate the memory map.节点数量为4096 memoryMap = new byte[maxSubpageAllocs << 1];
     //也是4096 个节点 depthMap
= new byte[memoryMap.length]; int memoryMapIndex = 1;
     //d 相当于一个深度, 赋值的内容代表当前节点的深度
for (int d = 0; d <= maxOrder; ++ d) { // move down the tree one level at a time int depth = 1 << d; for (int p = 0; p < depth; ++ p) { // in each level traverse left to right and set value to the depth of subtree memoryMap[memoryMapIndex] = (byte) d; depthMap[memoryMapIndex] = (byte) d; memoryMapIndex ++; } } subpages = newSubpageArray(maxSubpageAllocs); }

  首先将参数传入的值进行赋值this.memory = memory 就是将参数中创建的堆外内存进行保存, 就是chunk 所指向的那块连续的内存, 在这个chunk 中所分配的ByteBuf, 都会在这块内存中进行读写。我们重点关注memoryMap = new byte[maxSubpageAllocs << 1] 和depthMap = new byte[memoryMap.length]这两步:首先看memoryMap = new byte[maxSubpageAllocs << 1];这里初始化了一个字节数组memoryMap, 大小为maxSubpageAllocs << 1, 也就是4096;depthMap = new byte[memoryMap.length] 同样也是初始化了一个字节数组, 大小为memoryMap 的大小, 也就是4096。继续往下分析之前, 我们看chunk 的一个层级关系。

  这是一个二叉树的结构, 左侧的数字代表层级, 右侧代表一块连续的内存, 每个父节点下又拆分成多个子节点, 最顶层表示的内存范围为0-16MB, 其又下分为两层, 范围为0-8MB, 8-16MB, 以此类推, 最后到11 层, 以8k 的大小划分, 也就是一个page 的大小。如果我们分配一个8mb 的缓冲区, 则会将第二层的第一个节点, 也就是0-8 这个连续的内存进行分配, 分配完成之后,会将这个节点设置为不可用。结合上面的图, 我们再看构造方法中的for 循环:

for (int d = 0; d <= maxOrder; ++ d) { // move down the tree one level at a time
    int depth = 1 << d;
    for (int p = 0; p < depth; ++ p) {
        // in each level traverse left to right and set value to the depth of subtree
        memoryMap[memoryMapIndex] = (byte) d;
        depthMap[memoryMapIndex] = (byte) d;
        memoryMapIndex ++;
    }
}

  实际上这个for 循环就是将上面的结构包装成一个字节数组memoryMap, 外层循环用于控制层数, 内层循环用于控制里面每层的节点, 这里经过循环之后, memoryMap 和depthMap 内容为以下表现形式:[0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4...........]这里注意一下, 因为程序中数组的下标是从1 开始设置的, 所以第零个节点元素为默认值0。这里数字代表层级, 同时也代表了当前层级的节点, 相同的数字个数就是这一层级的节点数。其中0 为2 个(因为这里分配时下标是从1 开始的, 所以第0 个位置是默认值0, 实际上第零层元素只有一个, 就是头结点), 1 为2 个, 2 为4 个, 3 为8 个, 4 为16 个, n 为2 的n 次方个, 直到11, 也就是11 有2 的11 次方个。我们再回到PoolArena 的allocateNormal()方法继续来看 long handle = c.allocate(normCapacity) 这步,跟到allocate(normCapacity)中:

long allocate(int normCapacity) {
    if ((normCapacity & subpageOverflowMask) != 0) { // >= pageSize
        return allocateRun(normCapacity);
    } else {
        return allocateSubpage(normCapacity);
    }
}

  如果分配是以page 为单位, 则走到allocateRun(normCapacity)方法中, 跟进去:

private long allocateRun(int normCapacity) {
    int d = maxOrder - (log2(normCapacity) - pageShifts);
    int id = allocateNode(d);
    if (id < 0) {
        return id;
    }
    freeBytes -= runLength(id);
    return id;
}

  int d = maxOrder - (log2(normCapacity) - pageShifts) 表示根据normCapacity 计算出第几层;int id = allocateNode(d) 表示根据层级关系, 去分配一个节点, 其中id 代表memoryMap 中的下标。我们跟到allocateNode()方法中:

private int allocateNode(int d) {
  //下标初始值为1
  int id = 1;
  //代表当前层级第一个节点的初始下标
  int initial = - (1 << d);
  //获取第一个节点的值
  byte val = value(id);
  //如果值大于层级, 说明chunk 不可用
  if (val > d) {
    return -1;
  }//当前下标对应的节点值如果小于层级, 或者当前下标小于层级的初始下标
  while (val < d || (id & initial) == 0) {
    //当前下标乘以2, 代表下当前节点的子节点的起始位置
    id <<= 1;
    //获得id 位置的值
    val = value(id);
    //如果当前节点值大于层数(节点不可用)
    if (val > d) {
      //id 为偶数则+1, id 为奇数则-1(拿的是其兄弟节点)
      id ^= 1;
      //获取id 的值
      val = value(id);
    }
  }
  byte value
= value(id);   assert value == d && (id & initial) == 1 << d : String.format("val = %d, id & initial = %d, d = %d",   value, id & initial, d);   //将找到的节点设置为不可用   setValue(id, unusable);   //逐层往上标记被使用   updateParentsAlloc(id);   return id; }

  这里是实际上是从第一个节点往下找, 找到层级为d 未被使用的节点, 我们可以通过注释体会其逻辑。找到相关节点后通过setValue 将当前节点设置为不可用, 其中id 是当前节点的下标, unusable 代表一个不可用的值, 这里是12, 因为我们的层级只有12 层, 所以设置为12 之后就相当于标记不可用。设置成不可用之后, 通过updateParentsAlloc(id)逐层设置为被使用。我们跟进updateParentsAlloc()方法:

private void updateParentsAlloc(int id) {
  while (id > 1) {
    //取到当前节点的父节点的id
    int parentId = id >>> 1;
    //获取当前节点的值
    byte val1 = value(id);
    //找到当前节点的兄弟节点
    byte val2 = value(id ^ 1);
    //如果当前节点值小于兄弟节点, 则保存当前节点值到val, 否则, 保存兄弟节点值到val
    //如果当前节点是不可用, 则当前节点值是12, 大于兄弟节点的值, 所以这里将兄弟节点的值进行保存
    byte val = val1 < val2 ? val1 : val2;
    //将val 的值设置为父节点下标所对应的值
    setValue(parentId, val);
    //id 设置为父节点id, 继续循环
    id = parentId;
  }
}

  这里其实是将循环将兄弟节点的值替换成父节点的值, 我们可以通过注释仔细的进行逻辑分析。如果实在理解有困难,我通过画图帮助大家理解,简单起见, 我们这里只设置三层:

  我们模拟其分配场景, 假设只有三层, 其中index 代表数组memoryMap 的下标, value 代表其值, memoryMap 中的值就为[0, 0, 1, 1, 2, 2, 2, 2]。我们要分配一个4MB 的byteBuf, 在我们调用allocateNode(int d)中传入的d 是2, 也就是第二层。根据我们上面分分析的逻辑这里会找到第二层的第一个节点, 也就是0-4mb 这个节点, 找到之后将其设置为不可用, 这样memoryMap 中的值就为[0, 0, 1, 1, 12, 2, 2, 2],二叉树的结构就会变为:

  注意标红部分, 将index 为4 的节点设置为了不可用。将这个节点设置为不可用之后, 则会将进行向上设置不可用, 循环将兄弟节点数值较小的节点替换到父节点, 也就是将index 为2 的节点的值替换成了index 的为5 的节点的值, 这样数组的值就会变为[0, 1, 2, 1, 12, 2, 2, 2],二叉树的结构变为:

  这里节点标红仅仅代表节点变化, 并不是当前节点为不可用状态, 真正不可用状态的判断依据是value 值为12。

  这样, 如果再次分配一个4MB 内存的ByteBuf, 根据其逻辑, 则会找到第二层的第二个节点, 也就是4-8MB。再根据我们的逻辑, 通过向上设置不可用, index 为2 就会设置成不可用状态, 将value 的值设置为12, 数组数值变为[0, 1, 12, 1, 12,12, 2, 2]二叉树如下图所示:

 

  这样我们看到, 通过分配两个4mb 的byteBuf 之后, 当前节点和其父节点都会设置成不可用状态, 当index=2 的节点设置为不可用之后, 将不会再找这个节点下的子节点。以此类推, 直到所有的内存分配完毕的时候, index 为1 的节点,也会变成不可用状态, 这样所有的page 就分配完毕, chunk 中再无可用节点。现在再回到PoolArena 的allocateNormal()方法:

private synchronized void allocateNormal(PooledByteBuf<T> buf, int reqCapacity, int normCapacity) {
      //首先在原来的chunk 上进行内存分配(1)
        if (q050.allocate(buf, reqCapacity, normCapacity) || q025.allocate(buf, reqCapacity, normCapacity) ||
            q000.allocate(buf, reqCapacity, normCapacity) || qInit.allocate(buf, reqCapacity, normCapacity) ||
            q075.allocate(buf, reqCapacity, normCapacity)) {
            ++allocationsNormal;
            return;
        }
     //创建chunk 进行内存分配(2)
        // Add a new chunk.
        PoolChunk<T> c = newChunk(pageSize, maxOrder, pageShifts, chunkSize);
        long handle = c.allocate(normCapacity);
        ++allocationsNormal;
        assert handle > 0;
     //初始化byteBuf(3)
        c.initBuf(buf, handle, reqCapacity);
        qInit.add(c);
}

  通过以上逻辑我们知道, long handle = c.allocate(normCapacity)这一步, 其实返回的就是memoryMap 的一个下标,通过这个下标, 我们能唯一的定位一块内存。继续往下跟, 通过c.initBuf(buf, handle, reqCapacity)初始化ByteBuf 之后,通过qInit.add(c)将新创建的chunk 添加到chunkList 中,我们跟到initBuf 方法中去:

void initBuf(PooledByteBuf<T> buf, long handle, int reqCapacity) {
        int memoryMapIdx = memoryMapIdx(handle);
        int bitmapIdx = bitmapIdx(handle);
        if (bitmapIdx == 0) {
            byte val = value(memoryMapIdx);
            assert val == unusable : String.valueOf(val);
            buf.init(this, handle, runOffset(memoryMapIdx), reqCapacity, runLength(memoryMapIdx),
                     arena.parent.threadCache());
        } else {
            initBufWithSubpage(buf, handle, bitmapIdx, reqCapacity);
        }
    }

  从上面代码中,看出通过memoryMapIdx(handle)找到memoryMap 的下标, 其实就是handle 的值。bitmapIdx(handle)是有关subPage 中使用到的逻辑, 如果是page 级别的分配, 这里只返回0, 所以进入到if 块中。if 中首先断言当前节点是不是不可用状态, 然后通过init 方法进行初始化。其中runOffset(memoryMapIdx)表示偏移量, 偏移量相当于分配给缓冲区的这块内存相对于chunk 中申请的内存的首地址偏移了多少。参数runLength(memoryMapIdx), 表示根据下标获取可分配的最大长度。我们跟到init()方法中, 这里会走到PooledByteBuf 的init()方法:

void init(PoolChunk<T> chunk, long handle, int offset, int length, int maxLength,     PoolThreadCache cache) {
  //初始化
  assert handle >= 0;
  assert chunk != null;
  //在哪一块内存上进行分配的
  this.chunk = chunk;
  //这一块内存上的哪一块连续内存
  this.handle = handle;
  memory = chunk.memory;
  this.offset = offset;
  this.length = length;
  this.maxLength = maxLength;
  tmpNioBuf = null;
  this.cache = cache;
}

  这段代码又是我们熟悉的部分, 将属性进行了初始化。以上就是完整的DirectUnsafePooledByteBuf 在Page 级别的完整分配的流程, 逻辑也是非常的复杂, 想真正的掌握熟练, 还需要小伙伴们多下功夫进行调试和剖析。

 

转载于:https://www.cnblogs.com/wuzhenzhao/p/11290533.html


http://www.niftyadmin.cn/n/4646374.html

相关文章

Oracle scope中 spfile、memory、both 的区别

Oracle里面有个叫做spfile的东西&#xff0c;就是动态参数文件&#xff0c;里面设置了Oracle 的各种参数。 所谓的动态&#xff0c;就是说你可以在不关闭数据库的情况下&#xff0c;更改数据库参数&#xff0c;记录在spfile里面。 更改参数的时候&#xff0c;有4种scope选项&am…

解释一下一门语言该有的东东(Javascript -- 待完善 ^_^)

注释 Js中有两种注释 // 单行注释/**/ 多行注释变量 变量就像学校学习的 未知数 如 3 x 8 x: 类似变量&#xff0c;在改造一下 x y z 当 x3, y5, z8, 不管 x&#xff0c;y 怎么变&#xff0c;表达式不变 变量是存储数据的&#xff0c;那自然就有数据类型 基本类型 Number: …

洛谷 P4933 大师

题面 (实名推荐&#xff1a;本题的出题人小哥哥打球暴帅哦&#xff01;(APIO/CTSC/WC的时候一起打过球w&#xff0c;而且大学在我隔壁喔) ) 没仔细看数据范围的时候真是摸不着头脑。。。还以为要 O(N^2) dp 爆锤。。 后来发现v<20000&#xff0c;这能干啥呢&#xff1f; 至少…

Netty之SubPage级别的内存分配

SubPage 级别的内存分配: 通过之前的学习我们知道, 如果我们分配一个缓冲区大小远小于page, 则直接在一个page 上进行分配则会造成内存浪费, 所以需要将page 继续进行切分成多个子块进行分配, 子块分配的个数根据你要分配的缓冲区大小而定, 比如只需要分配1KB 的内存, 就会将一…

laravel报错 : laravel Please provide a valid cache path

这是因为laravel的缓存路径没有找到 laravel缓存文件路径是在 config/cache.php中设置&#xff0c;默认存在storage文件夹中 file > [driver > file,path > storage_path(framework/cache/data),], 解决 需要保证storage/framework下面创建 sessions&#xff0c; vie…

使用Pull解析XML获取新浪新闻

目标是获取新浪新闻如图所示位置的头条新闻数据&#xff1a; 思路是这样的&#xff0c;先访问这个首页拿到这个部分每一条新闻的url&#xff0c;然后再逐一访问这些详情页面&#xff0c;从详情页面获取标题正文图片等数据。 1.通过HttpUrlConection向网页发送数据并分析返回数…

位运算记录

作为在互联网领域工作的程序员啊&#xff0c;我们需要不断地学习。自己也坚持每天刷一两个 LeetCode 题目&#xff0c;在刷题的过程中&#xff0c;发现有不少题目都涉及到一些位运算的知识&#xff0c;这篇文章记录一下。 介绍运算 按位与(&)按位或(|)按位异或(^)左移(<…

只手遮天

.. 用这个作为这~ 一连5篇的结束 .. 有感而发&#xff0c;写段文字 .. 读大学时&#xff0c;自我感觉不太会说话&#xff0c;显得相当的木纳&#xff0c;对许多人除了微笑讲不上几句 .. 如今&#xff0c;已经会说话&#xff0c;而且也会分场合 .. 说话时&#xff0c;我的话仍然…